how to print barcode in crystal report in c#.net OPTIMIZATION in Software

Encoder Quick Response Code in Software OPTIMIZATION

OPTIMIZATION
QR Code 2d Barcode Generator In None
Using Barcode printer for Software Control to generate, create Denso QR Bar Code image in Software applications.
Quick Response Code Decoder In None
Using Barcode reader for Software Control to read, scan read, scan image in Software applications.
it,I+:lS-,1,,i l ,t
QR Code Drawer In Visual C#
Using Barcode generator for .NET Control to generate, create Denso QR Bar Code image in Visual Studio .NET applications.
Quick Response Code Printer In .NET Framework
Using Barcode encoder for ASP.NET Control to generate, create QR Code JIS X 0510 image in ASP.NET applications.
'i,,|
Quick Response Code Generation In .NET
Using Barcode maker for .NET Control to generate, create QR Code JIS X 0510 image in Visual Studio .NET applications.
Denso QR Bar Code Generation In Visual Basic .NET
Using Barcode creator for VS .NET Control to generate, create QR Code 2d barcode image in VS .NET applications.
continued
Generate Bar Code In None
Using Barcode creator for Software Control to generate, create bar code image in Software applications.
Making Code 128 Code Set B In None
Using Barcode generator for Software Control to generate, create Code 128B image in Software applications.
Equation(711)definesa parabola Sincethe potentialenergy will beat a equilibrium, the solution for displacement be viewed as a one-dimensional can tion problem Becausethis equation is so easy to differentiate,we can solvefor p l a c e m e na s r : F / k F o r e x a m p l ei,f k : 2 N / c m a n d F : 5 N , r = 5 N / ( 2 t 25 cm A more interestingtwo-dimensionalcaseis shown in Fig 711In this two degreesof freedom in that the system can move both horizontallyand are In the same way that we approachedthe one-dimensionalsystem,the equilibrium mationsare the valuesof x, and x, that minimize the potentialenergy:
Making Code-39 In None
Using Barcode encoder for Software Control to generate, create Code39 image in Software applications.
GS1 128 Drawer In None
Using Barcode printer for Software Control to generate, create EAN / UCC - 14 image in Software applications.
_ ^ l2
Barcode Generator In None
Using Barcode generator for Software Control to generate, create bar code image in Software applications.
UCC - 12 Encoder In None
Using Barcode maker for Software Control to generate, create UPC-A Supplement 2 image in Software applications.
+ (L,,- x ) 2 * L")
Create ANSI/AIM ITF 25 In None
Using Barcode encoder for Software Control to generate, create ITF image in Software applications.
Barcode Encoder In Java
Using Barcode creator for Java Control to generate, create bar code image in Java applications.
+ oskb (
Printing Code 128 Code Set B In Objective-C
Using Barcode generator for iPhone Control to generate, create Code128 image in iPhone applications.
Barcode Printer In Java
Using Barcode creator for BIRT reports Control to generate, create barcode image in Eclipse BIRT applications.
If the parameters ko: 9 N/cm, k, : 2 N/cm, Lo: 70 cnt Lo: l0 cm,F, = 2 are Fz = 4 N, use MATLAB to solve for the displacementsand the potentialenergy
UPC-A Supplement 5 Creation In Java
Using Barcode generator for Java Control to generate, create GS1 - 12 image in Java applications.
Making Universal Product Code Version A In None
Using Barcode creation for Microsoft Word Control to generate, create UPC Symbol image in Office Word applications.
Thu loca
Creating GS1 - 12 In C#.NET
Using Barcode creator for .NET Control to generate, create UPC-A image in Visual Studio .NET applications.
Drawing Bar Code In None
Using Barcode encoder for Microsoft Excel Control to generate, create bar code image in Microsoft Excel applications.
7I FIGURE I A 1"wo-spring (o)unlooded (bllocded system: ond
PROBTEM
three iterations the root of Eq t
Example along 71 the formula =-x2*8x-12
the maximum this function analytir
thatEq (710)yi guesses ofr, - 0,
the following f
=3+6r+5x2+3
6e minimum by findi
Use bisection r
-15x6+2r4+1 fiurction
methods to
fu dl values of r
PROBLEMS
continued
Solution to An M-file can be developed hold the potentialenergyfunction:
p = P H ( x , k a , l : b ,L a , L b , F ' I , l -2 ) function ^1 -La '2; ) P E a =0 5 * k a * ( s q r t ( x ( 1 ) ^ 2 + ( L a - r ( 2 ) ) ) ( s q r t ( x ( 1) ' 2 + ( l , b + x \ ' 2 ) ) ^ 2 ) L b ) ' l ; PEb=05*kb* W - F l * x ( 1 ) + F 2* x ( 2 ) ; p - P F l a + E b- W ; P The solution can be obtained with the fminsearch function:
k a = 9 ; k b - 2 ; L a = 1 0 ; t , l ; =i 0 ; F 1 , ,: , ; E " t , - , ] I x , f ] - f r n i n s e a r c h ( B P E , i - " 0 ! r , 0 5 l
4 9\2 i
I 2'09 l
- 9 (,42,: point is Thus, at equilibrium,the potentialenergyis -96422 Ncm The connecting position cm located49523 cm to the right and 12'759 aboveits original
PROBtEMS
(c) Dil-l-erentiatc' lirnction and then Lrse root-location a the methodIo solve lor the maxirlurnl(r)and the corresponding valueul'r (,r) 75 Solve for the value of -xthat rnuximizesf in Prob74 search of Employ initial guesses using the golden-section 12 J ( r= - r r + 8 r ) ,ti : 0 and-r,,: 2, and perfbrrnthree iterations valueol' 7(r RepeatProb 75, except use parabolicintcrpolation the and the colresponding Delermine maxinrurn analvtical ( ieusingdill-erentiation) Enrplo-v ly rfor functirx lhis initialguesses ,r) : 0,r, : I andxr : 2 rnd perof Vedfy Eq (710)yields the sanreresultsbasedon lbrm threeiterations that : of,t, initialguesses : fl, v - 1 xp1lv $ nlethodsto t'ind the nrarirnum ol77 Enploy the l'o|l<'tring the Considerlbllowinglunction: I ( r ) : 4 x - l u x 2* 1 2 - 1 3 0 3 - r a '(r) r = 3 { 6-r* -5-r + 3xr +,l-ra (rr: -2, -r, : 4, 8, : l(nr (a) Golden-section search ol' nrinimunr findingthe root ol'the derivative by the (b) Parabolic (,tr interpolation : 17-5, : 2 ir : 2-5, r'z 2 Use with initial [uesses -r,: of function bisection : iterations -5) r r =l ' the 7ll Consider fbllowing function: Given r 1 y )- 1 5 - t n 2 x " + 1 2 l f (xl : ro + 2-tr + 8x2 + 5r = + method of three Perform iterations the Newton-Riiphson valfherootof Eq (E7| l) Usethe parameter o E x a m p7e 1a l o n gw i t h a n i n i t i a lg u e s s f r : 3 s l the Given fonnula the Plot function methods prove that the function is conto Useanalytical of for cave all values -r methods show the lirnction to and graphical Use analytical has a minirnum fbr some value ol' x in the range *2 < x < l
Copyright © OnBarcode.com . All rights reserved.