Poisson distribution with grouping of low frequencies in Software

Encode QR Code 2d barcode in Software Poisson distribution with grouping of low frequencies

Poisson distribution with grouping of low frequencies
Generate QR Code JIS X 0510 In None
Using Barcode maker for Software Control to generate, create QR Code 2d barcode image in Software applications.
Decoding QR Code In None
Using Barcode reader for Software Control to read, scan read, scan image in Software applications.
/* Poisson Distribution with Grouping of Low Frequencies 6-9 */ DECLARE expfr(0:20); expfr(0) = n*EXP(-mean); left = n-expfr(0); /* number of blocks for assignment */ prod = expfr(0)*mean; DO ov = 1 BY 1 WHILE(prod<ov); /* ok if next expfr > 1 */ expfr(ov) = prod/ov; /* as computed now */ left = left-expfr(ov); prod = expfr(ov)*mean; END; /* used later in Table 6-10 */ last category = ov; expfr(last category) = left;
Draw Denso QR Bar Code In C#
Using Barcode maker for VS .NET Control to generate, create QR Code JIS X 0510 image in Visual Studio .NET applications.
Creating QR Code In Visual Studio .NET
Using Barcode maker for ASP.NET Control to generate, create QR-Code image in ASP.NET applications.
Testing for Goodness of Fit
QR-Code Generation In Visual Studio .NET
Using Barcode drawer for Visual Studio .NET Control to generate, create QR Code image in .NET applications.
Generating Quick Response Code In Visual Basic .NET
Using Barcode generator for .NET Control to generate, create Denso QR Bar Code image in .NET framework applications.
Analysis Techniques
Bar Code Drawer In None
Using Barcode maker for Software Control to generate, create barcode image in Software applications.
Bar Code Generation In None
Using Barcode creation for Software Control to generate, create barcode image in Software applications.
A more formal test to determine if a distribution ts the data can be made using the chi-square function The chi-square, or 2 , test compares categories of observations and their expectations, but each category should contain at least one expected sample To avoid invalid categories, the frequencies of the Poisson distribution that are less than 1 can be grouped with the last good category as shown in the program of Table 6-9 and Example 6-6
Create Data Matrix 2d Barcode In None
Using Barcode encoder for Software Control to generate, create Data Matrix ECC200 image in Software applications.
Code 3 Of 9 Creation In None
Using Barcode drawer for Software Control to generate, create Code 39 Extended image in Software applications.
Example 6-5
EAN-13 Supplement 5 Generator In None
Using Barcode drawer for Software Control to generate, create EAN13 image in Software applications.
GTIN - 12 Drawer In None
Using Barcode creation for Software Control to generate, create Universal Product Code version A image in Software applications.
Poisson distribution of insertions for an indexed-sequential le
Making 2/5 Industrial In None
Using Barcode maker for Software Control to generate, create 2 of 5 Industrial image in Software applications.
Bar Code Encoder In Java
Using Barcode creator for Java Control to generate, create bar code image in Java applications.
There were 550 insertions into a dense indexed-sequential le of 400 blocks These insertions caused 0, 1, 2, over ow records to be written for each of the blocks The mean number of insertions per block is mean = 550/400 = 138 The expected frequency is computed for n = 400
Create GTIN - 12 In Objective-C
Using Barcode drawer for iPhone Control to generate, create UPC-A image in iPhone applications.
Draw European Article Number 13 In Java
Using Barcode generator for Java Control to generate, create EAN-13 Supplement 5 image in Java applications.
No of over ows ov 0 1 2 3 4 5 6 7
Encode Barcode In Java
Using Barcode maker for Java Control to generate, create bar code image in Java applications.
Print Linear Barcode In Visual Studio .NET
Using Barcode drawer for ASP.NET Control to generate, create Linear Barcode image in ASP.NET applications.
Observations Frequency Records fr(ov) ov fr(ov) 101 138 98 45 11 5 2 0 0 400
Decode GS1-128 In C#
Using Barcode scanner for .NET framework Control to read, scan read, scan image in VS .NET applications.
Reading Bar Code In Visual C#.NET
Using Barcode Control SDK for Visual Studio .NET Control to generate, create, read, scan barcode image in .NET applications.
Expectations Frequency expfr(ov) 1014 1391 956 438 151 41 09 02 400
138 196 135 44 25 12 0 0 550
The observed values, listed in Example 6-5 are best inspected again visually A better presentation for that purpose would be a histogram fx as can be generated by the program segment in Table 6-5 The cells of low expected value are combined into a single, namely the last category, by accumulating them in a program loop as shown in Table 6-10 Then the chi-square values are computed, as shown in Table 6-11, to see how well the actual observations t the assumed Poisson distribution The nal results are seen together in Example 6-6
Table 6-10
Combining tail values of an observed frequency histogram
/* Combine tail values of observed frequency histogram */ /* 6-10 */ DO i = last category+1 TO number of categories; fx(last category) = fx(last category) + fx(i); END;
Sec 6-1
Table 6-11
Statistical Methods Computation of Chi-square value for goodness of t test
/* Computation of Chi-Square Value for Goodness of Fit */ /* 6-11 */ chisquare = 0; DO ov = 0 TO last category; dif = fx(ov)- expfr(ov); chisqterm = dif**2 / expfr(ov); chisquare = chisquare + chisqterm; PUT DATA( ov, fx(ov), expfr(ov), dif, chisqterm); END; PUT DATA( SUM(fx), SUM(expfr), chisquare); Values obtained for 2 can be compared with standard values, which are based on the assumption that the di erence of distributions was caused by random events These standard values for 2 can be computed as needed using approximations of binomial distributions or can be found in statistical tables and graphs Figure 6-6 presents the standard 2 distribution in graphical form In order to use the 2 distribution, the number of degrees of freedom df has to be known When we distribute our samples over a speci c number of categories c the value of df will be equal to c 1
Example 6-6
Testing a Poisson distribution fx(ov)
101 138 98 45 11 7 400
0 1 2 3 4 last n=
expfr
1011 1391 956 438 151 53 400
dif chisqterm
01 11 24 12 41 17 0001 0009 0060 0033 1113 0545 2 = 1761
Evaluation:
The value for 2 is 1761 at a df = 5 for the indexed-sequential le observations shown in Example 6-5 The value for this comparison falls within the area of Example 6-6, which is appropriate for most cases which match an expected distribution The point is o -center, close to the good side, so that it seems likely that the le updates are not quite random, but somewhat uniform Perhaps many of the insertions are due to some regular customer activity
A very high value of 2 makes it unlikely that the frequencies are related; a very low value could cause suspicion that the data is arranged to show a beautiful t The chi-square test is useful when distributions are being compared Other tests, such as the t-test and F-test, can be used to compare means and standard deviations obtained from samples with their expected values, if the distribution is known or assumed to be known
Copyright © OnBarcode.com . All rights reserved.