- Home
- Products
- Integration
- Tutorial
- Barcode FAQ
- Purchase
- Company
barcode in ssrs report 1=p 2 Thus in VS .NET
1=p 2 Thus Recognizing QR Code 2d Barcode In Visual Studio .NET Using Barcode Control SDK for VS .NET Control to generate, create, read, scan barcode image in Visual Studio .NET applications. QR Code Creator In .NET Using Barcode creation for .NET framework Control to generate, create Denso QR Bar Code image in VS .NET applications. 1=p 2 1 x sin 1 x2 1 1 2 2 1 2 2 p dx sin x : sin 1 144 4 4 2 1 x4 0 Scan QR-Code In Visual Studio .NET Using Barcode recognizer for Visual Studio .NET Control to read, scan read, scan image in .NET applications. Paint Barcode In .NET Framework Using Barcode printer for VS .NET Control to generate, create bar code image in VS .NET applications. f Decode Barcode In .NET Framework Using Barcode decoder for Visual Studio .NET Control to read, scan read, scan image in VS .NET applications. Drawing Denso QR Bar Code In C#.NET Using Barcode printer for .NET Control to generate, create QR Code ISO/IEC18004 image in VS .NET applications. x dx 1 2x 1 1 1 2x 1 1 dx p p dx p dx p 2 2 x2 x 1 x2 x 1 2 x2 x 1 x2 x 1 1 1 dx q x2 x 1 1=2 d x2 x 1 2 2 x 1 2 3 q p x2 x 1 1 ln jx 1 x 1 2 3j c 2 2 2 4 QR Code ISO/IEC18004 Encoder In .NET Framework Using Barcode creator for ASP.NET Control to generate, create QR Code 2d barcode image in ASP.NET applications. Make QR Code JIS X 0510 In VB.NET Using Barcode printer for Visual Studio .NET Control to generate, create QR Code image in VS .NET applications. 2 5.15. Show that
Bar Code Creator In Visual Studio .NET Using Barcode printer for .NET Control to generate, create bar code image in Visual Studio .NET applications. DataBar Generation In .NET Using Barcode generation for VS .NET Control to generate, create GS1 DataBar Stacked image in Visual Studio .NET applications. dx 1 . x2 2x 4 3=2 6
Make EAN13 In .NET Using Barcode creation for VS .NET Control to generate, create European Article Number 13 image in .NET applications. EAN / UCC - 8 Generator In .NET Using Barcode creation for Visual Studio .NET Control to generate, create EAN8 image in .NET applications. p p dx . Let x 1 3 tan u, dx 3 sec2 u du. x 1 2 3 3=2 p u tan 1 0 0; when x 2, u tan 1 1= 3 =6. Then the integral becomes Write the integral as =6 =6 p 2 =6 p 2 3 sec u du 3 sec u du 1 =6 1 1 cos u du sin u 2 u 3=2 2 u 3=2 3 0 3 6 3 sec 0 3 3 tan 0 0 Barcode Encoder In .NET Framework Using Barcode encoder for ASP.NET Control to generate, create bar code image in ASP.NET applications. Print GTIN - 13 In Java Using Barcode maker for Java Control to generate, create EAN 13 image in Java applications. When x 1, Universal Product Code Version A Decoder In Visual Studio .NET Using Barcode reader for VS .NET Control to read, scan read, scan image in VS .NET applications. Generating Bar Code In Java Using Barcode maker for Eclipse BIRT Control to generate, create barcode image in BIRT reports applications. e2 5.16. Determine
Code 128A Scanner In Visual C#.NET Using Barcode recognizer for .NET framework Control to read, scan read, scan image in Visual Studio .NET applications. Barcode Creation In Java Using Barcode generation for Java Control to generate, create bar code image in Java applications. dx . x ln x 3
Code-39 Printer In Java Using Barcode generator for Java Control to generate, create Code-39 image in Java applications. GS1 - 13 Drawer In Java Using Barcode maker for Android Control to generate, create EAN-13 image in Android applications. When x e, y 1; when x e2 , y 2. 2 dy y 3 3 2 1 8 1 y
2 2
Let ln x y, dx =x dy.
Then the integral becomes
5.17. Find xn ln x dx if (a) n 6 1, (b) n 1.
CHAP. 5] INTEGRALS
(a) Use integration by parts, letting u ln x, dv xn dx, so that du dx =x, v xn 1 = n 1 . n 1 xn 1 x dx ln x xn ln x dx u dv uv v du n 1 n 1 x xn 1 xn 1 ln x c n 1 n 1 2 b 1 x 1 ln x dx ln x d ln x ln x 2 c: 2 p 2x 1
Then
5.18. Find 3
Then dx y dy and the integral becomes 3y y dy.
p 2x 1 y, 2x 1 y2 .
Integrate by parts, letting u y, dv 3y dy; then du dy, v 3y = ln 3 , and we have y y 3y 3 y 3y 3y 3y y dy u dv uv v du dy c ln 3 ln 3 ln 3 ln 3 2 1 5.19. Find
x ln x 3 dx.
dx x2 , v . Hence on integrating by parts, x 3 2 2 1 x dx x2 1 9 x 3 ln x 3 ln x 3 dx 2 x 3 2 x 3 2 ( ) 1 x2 ln x 3 3x 9 ln x 3 c 2 2 1 5 9 4 ln 4 ln 3 4 2 Let u ln x 3 , dv x dx. Then du x ln x 3 dx x2 2 x2 2
Then
x ln x 3 dx
5.20. Determine
6 x dx. x 3 2x 5
Use the method of partial fractions.
6 x A B . x 3 2x 5 x 3 2x 5
Method 1: To determine the constants A and B, multiply both sides by x 3 2x 5 to obtain 6 x A 2x 5 B x 3 or 6 x 5A 3B 2A B x 1 Since this is an identity, 5A 3B 6, 2A B 1 and A 3=11, B 17=11. Then 6 x 3=11 17=11 3 17 dx dx dx ln jx 3j ln j2x 5j c x 3 2x 5 x 3 2x 5 11 22 Method 2: Substitute suitable values for x in the identity (1). For example, letting x 3 and x 5=2 in (1), we nd at once A 3=11, B 17=11. 5.21. Evaluate
dx by using the substitution tan x=2 u. 5 3 cos x
1 + From Fig. 5-7 we see that u sin x=2 p ; 1 u2 1 cos x=2 p 1 u2
Fig. 5-7 INTEGRALS
[CHAP. 5
Then
cos x cos2 x=2 sin2 x=2 1 du sec2 x=2 dx or 2
1 u2 : 1 u2 2 du : 1 u2
Also
dx 2 cos2 x=2 du
Thus the integral becomes
du 1 1 1 tan 1 u=2 c tan 1 tan x=2 c: 2 2 u2 4 2
5.22. Evaluate
x sin x dx. 1 cos2 x
Let x y. Then x sin x y sin y sin y y sin y I dx dy dy dy 2x 2y 2y 2 0 1 cos 0 1 cos 0 1 cos 0 1 cos y d cos y I tan 1 cos y j I 2 =2 I 0 2 0 1 cos y i.e.; I 2 =2 I or I 2 =4: =2 5.23. Prove that
p sin x p p dx . 4 sin x cos x
Letting x =2 y, we have p p =2 =2 =2 p cos y cos x sin x p p dx I p p dx p p dy sin x cos x cos x sin x cos y sin y 0 0 0 Then I I p p =2 cos x sin x p p dx p p dx cos x sin x sin x cos x 0 0 =2 p p =2 sin x cos x p p dx dx 2 sin x cos x 0 0 =2 from which 2I =2 and I =4. The same method can be used to prove that for all real values of m, =2 sinm x dx m m 4 0 sin x cos x (see Problem 5.89). Note: This problem and Problem 5.22 show that some de nite integrals can be evaluated without rst nding the corresponding inde nite integrals. NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS 1 dx approximately, using (a) the trapezoidal rule, (b) Simpson s rule, where the 5.24. Evaluate 2 01 x interval 0; 1 is divided into n 4 equal parts. Let f x 1= 1 x2 . Using the notation on Page 98, we nd x b a =n 1 0 =4 0:25. Then keeping 4 decimal places, we have: y0 f 0 1:0000, y1 f 0:25 0:9412, y2 f 0:50 0:8000, y3 f 0:75 0:6400, y4 f 1 0:50000. (a) The trapezoidal rule gives CHAP. 5] INTEGRALS x 0:25 fy 2y1 2y2 2y3 y4 g f1:0000 2 0:9412 2 0:8000 2 0:6400 0:500g 2 0 2 0:7828: (b) Simpson s rule gives x 0:25 fy 4y1 2y2 4y3 y4 g f1:0000 4 0:9412 2 0:8000 4 0:6400 0:5000g 3 0 3 0:7854: The true value is =4 % 0:7854: APPLICATIONS (AREA, ARC LENGTH, VOLUME, MOMENT OF INTERTIA) 5.25. Find the (a) area and (b) moment of inertia about the y-axis of the region in the xy plane bounded by y 4 x2 and the x-axis. (a) Subdivide the region into rectangles as in the gure on Page 90. A typical rectangle is shown in the adjoining Fig. 5-8. Then Required area lim
|
|