Multivariate Calculus
Reading QR Code In NoneUsing Barcode Control SDK for Software Control to generate, create, read, scan barcode image in Software applications.
Create Quick Response Code In NoneUsing Barcode creator for Software Control to generate, create QR Code image in Software applications.
To find the maximum and minimum values of a function f(x, y) subject to the constraint g(x, y) = 0, the method of Lagrange multipliers can be used. Geometrically, it can be shown that the maximum (minimum) value of f will occur where the level curves of f and the level curves of g share a common tangent line. At this point the gradient of f 1 and the gradient of g will be parallel and f ( x , y) = g( x , y) . It follows that f x ( x , y) = g x ( x , y) f y ( x , y) = g y ( x , y) Using these equations, together with g(x, y) = 0, can be eliminated and the values of x and y corresponding to the maximum and minimum values of f can be determined. The next example illustrates the procedure.
QR Code Decoder In NoneUsing Barcode scanner for Software Control to read, scan read, scan image in Software applications.
QR Code ISO/IEC18004 Generator In C#.NETUsing Barcode drawer for .NET framework Control to generate, create QR-Code image in .NET applications.
EXAMPLE 7 Suppose we wish to find the maximum and minimum values of f(x, y) = 2x2 + 3y2 subject to the
Painting Denso QR Bar Code In Visual Studio .NETUsing Barcode drawer for ASP.NET Control to generate, create QR-Code image in ASP.NET applications.
QR Printer In .NETUsing Barcode creator for VS .NET Control to generate, create QR-Code image in .NET applications.
Eliminate[equations, k] eliminates between a set of simultaneous equations. See 6.
Encoding QR-Code In Visual Basic .NETUsing Barcode drawer for .NET framework Control to generate, create QR Code JIS X 0510 image in VS .NET applications.
Generate UPC-A Supplement 2 In NoneUsing Barcode maker for Software Control to generate, create UPC A image in Software applications.
constraint x2 + y2 = 4. We define g(x, y) = x2 + y2 4 and eliminate . f[x_, y_]= 2 x + 3 y ; g[x_, y_]= x2 + y 2 4;
Bar Code Maker In NoneUsing Barcode encoder for Software Control to generate, create bar code image in Software applications.
Print Bar Code In NoneUsing Barcode drawer for Software Control to generate, create barcode image in Software applications.
conditions = Eliminate[{ xf[x, y] k x g[x, y], yf[x, y] k y g[x, y], g[x, y] 0}, k ] x 2 4 y 2 & & x y 0 & & 4y + y 3 0 points = Solve[conditions] {{x 2, y 0}, {x 0, y 2}, {x 0, y 2}, {x 2, y 0}} To determine the maximum and minimum values of f, we compute its values at these points. functionvalues = f[x, y] /. points {8, 12, 12, 8} Max[functionvalues] 12 Min[functionvalues] 8 The method of Lagrange multipliers can be extended to functions of three (or more) variables.
EAN13 Drawer In NoneUsing Barcode printer for Software Control to generate, create EAN-13 Supplement 5 image in Software applications.
Data Matrix 2d Barcode Drawer In NoneUsing Barcode maker for Software Control to generate, create Data Matrix 2d barcode image in Software applications.
EXAMPLE 8 To find the maximum and minimum values of f(x, y, z) = xyz, subject to the constraint x2 + 2 y2 + 3 z2 = 6,
European Article Number 8 Printer In NoneUsing Barcode generator for Software Control to generate, create EAN-8 image in Software applications.
Reading Code 39 Extended In Visual Studio .NETUsing Barcode recognizer for .NET Control to read, scan read, scan image in .NET applications.
we define g(x, y, z) = x2 + 2 y2 + 3 z2 6. f[x_, y_,z_]= x y z;
Painting EAN / UCC - 14 In NoneUsing Barcode creator for Font Control to generate, create UCC-128 image in Font applications.
UPC-A Recognizer In C#.NETUsing Barcode decoder for Visual Studio .NET Control to read, scan read, scan image in Visual Studio .NET applications.
g[x_, y_,z_]= x2 + 2 y 2 + 3 z2 6; conditions = Eliminate[{ xf[x, y,z] k x g[x, y,z] , yf[x, y,z] k y g[x, y,z], zf[x, y,z] k z g[x, y,z], g[x, y,z] 0}, k] x2 6 2 y 2 3 z2 & & 4 y 2 z z(6 3 z2)& & x(2 y 2 3 z2) 0 & & x y( 2+ 3 z2) 0 & & x z( 2+ 3 z2) 0 & & y z( 2+ 3 z2) 0 & & 4 z 8 z3 + 3 z5 0 & & y 3 + y( 3 + 3 z2) 0 points = Solve[conditions]
Decode UPC Symbol In .NET FrameworkUsing Barcode reader for Visual Studio .NET Control to read, scan read, scan image in Visual Studio .NET applications.
UPC-A Creator In JavaUsing Barcode creator for Java Control to generate, create UPC-A Supplement 2 image in Java applications.
{{x 0, y 0, z 2 },{x 0, y 0, z 2 }, {x 0, y 0, z
Code39 Generation In NoneUsing Barcode drawer for Online Control to generate, create Code39 image in Online applications.
Reading Code 128 Code Set A In Visual Basic .NETUsing Barcode scanner for .NET Control to read, scan read, scan image in .NET framework applications.
2 },{x 0, y 0, z 2 },{x 0, y 3 , z 0},
The gradient of f ( x, y) is the vector function f ( x, y) = f x ( x, y) i + f y (x, y) j. The gradient of f ( x, y, z) is f ( x, y, z) = f x ( x, y, z) i + f y (x, y, z) j + f z ( x, y, z) k.
Multivariate Calculus
{x 0, y 3 , z 0},{x 0, y
3 , z 0},{x 0, y 2 3 },
3 , z 0},
2 {x 2 , y 1, z 3 },{x 2 , y 1, z 2 {x 2 , y 1, z 3 },{x 2 , y 1, z
{x {x
2 , y 1, z 2 },{x 2 , y -1, z 3 2 2 , y 1, z 2 },{x 6 , y 0, z 0}, 2 , y 1, z 3 3 },{x
2 3 }, 2 3 },
{x 6 , y 0, z 0},{x 6 , y 0, z 0},{x 6 , y 0, z 0}}