Ans. 2.23 in .NET

Creating QR-Code in .NET Ans. 2.23

Ans. 2.23
QR Code Decoder In VS .NET
Using Barcode Control SDK for VS .NET Control to generate, create, read, scan barcode image in .NET applications.
Painting QR-Code In .NET
Using Barcode drawer for VS .NET Control to generate, create QR Code image in .NET framework applications.
Denote by u the smallest positive angle whose terminal side passes through the given point, and find the trigonometric functions of u: (a) P( 5, 12), Ans. (b) P(7, 24), (c) P(2, 3), (d) P( 3, 5) Answers listed in the order sin u, cos u, tan u, cot u, sec u, csc u 5/13, 12/5, 24/7, 5/12, 13/5, 13/12 25/24 3 234>34, 5>3, 3>5, 234>3, 234>5 2 213>13, 3>2, 2>3, 213>2, 213>3 3> 234
Read QR Code ISO/IEC18004 In Visual Studio .NET
Using Barcode scanner for .NET Control to read, scan read, scan image in Visual Studio .NET applications.
Bar Code Encoder In Visual Studio .NET
Using Barcode maker for VS .NET Control to generate, create barcode image in VS .NET applications.
(a) 12/13, (b) (c) 3> 213 (d) 2.24
Barcode Recognizer In VS .NET
Using Barcode reader for .NET Control to read, scan read, scan image in Visual Studio .NET applications.
Painting QR In C#.NET
Using Barcode creation for .NET Control to generate, create QR Code image in .NET framework applications.
24/25, 7/25, 5> 234
QR Creation In VS .NET
Using Barcode encoder for ASP.NET Control to generate, create QR Code 2d barcode image in ASP.NET applications.
Quick Response Code Maker In VB.NET
Using Barcode generation for .NET Control to generate, create QR Code image in VS .NET applications.
7/24, 25/7,
Bar Code Generation In VS .NET
Using Barcode drawer for .NET framework Control to generate, create bar code image in Visual Studio .NET applications.
GS1 DataBar Limited Encoder In .NET Framework
Using Barcode creator for VS .NET Control to generate, create GS1 DataBar Expanded image in VS .NET applications.
3 213>13, 2> 213 5 234>34,
Bar Code Creator In .NET Framework
Using Barcode generator for VS .NET Control to generate, create bar code image in VS .NET applications.
Encoding Leitcode In VS .NET
Using Barcode printer for .NET Control to generate, create Leitcode image in .NET applications.
Find the values of the trigonometric functions of u, given: (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) sin u cos u tan u cot u sin u cos u tan u cot u sec u csc u 7/25 4/5 5/12 24/7 2/3 5/6 3/5 26>2 25 2> 23
Printing Bar Code In Java
Using Barcode drawer for Java Control to generate, create bar code image in Java applications.
Code 128 Code Set A Generation In C#.NET
Using Barcode drawer for Visual Studio .NET Control to generate, create Code 128 Code Set A image in Visual Studio .NET applications.
2 23>3
UPC Symbol Drawer In None
Using Barcode creator for Excel Control to generate, create UPC-A image in Microsoft Excel applications.
Barcode Creation In .NET
Using Barcode printer for Reporting Service Control to generate, create bar code image in Reporting Service applications.
Ans.
Recognize Barcode In VB.NET
Using Barcode reader for .NET framework Control to read, scan read, scan image in .NET framework applications.
EAN13 Decoder In Visual Basic .NET
Using Barcode reader for VS .NET Control to read, scan read, scan image in VS .NET applications.
Answers listed in the order sin u, cos u, tan u, cot u, sec u, csc u
GTIN - 12 Generator In Visual Studio .NET
Using Barcode maker for ASP.NET Control to generate, create GS1 - 12 image in ASP.NET applications.
GTIN - 128 Generation In None
Using Barcode creator for Online Control to generate, create EAN / UCC - 13 image in Online applications.
(a) I: 7/25, 24/25, 7/24, 24/7, 25/24, 25/7 II: 7/25, 24/25, 7/24, 24/7, 25/24, 25/7 (b) II: 3/5, 4/5, 3/4, 4/3, 5/4, 5/3 III: 3/5, 4/5, 3/4, 4/3, 5/4, 5/3
CHAPTER 2 Trigonometric Functions of a General Angle
(c) II: 5/13, 12/13, 5/12, 12/5, 13/12, 13/5 IV: 5/13, 12/13, 5/12, 12/5, 13/12, 13/5 (d) I: 7/25, 24/25, 7/24, 24/7, 25/24, 25/7 III: 7/25, 24/25, 7/24, 24/7, 25/24, 25/7 (e) III: IV: IV: III: III: 2>3, 25>3, 2> 25 2> 25 211>5, 3 234>34, 210>5, 2> 25>5, 25>2, 2 25>5, 5> 211 5> 234 23> 25 3> 25 3 25>5, 3 25>5, 6 211>11 6> 211 234>5, 6 211>11 234>3 215>3, 210>2 25> 23 3>2 3>2 2>3, 25>3, 211>6, 5>6, 3> 234 2> 210 25>2, 3> 25
(f) I: 211>6, 5>6, 211>5, 5> 211 (g) I: 3> 234 (h) I: 2> 210 3 234>34, 5> 234 210>5, 23> 25
5 211>11, 6>5, 6 211
5 211>11, 6>5, 5 234>34, 3>5, 5>3, 215>5, 2> 26
5 234>34, 3>5, 5>3, 234>5, 234>3 215>5, 2> 26 26>3, 26>2, 25> 23
26>3, 26>2,
210>2 215>3, (i) II: 2> 25 2 25>5, 1> 25 25>5, 2, 1>2, 25, 25>2 III: 2 25>5, 1> 25 25>5, 2, 1>2, 25, 25>2 2> 25 (j) III: 1>2, 23, 1> 23 23>3, 2, 2> 23 2 23>3 23>2, IV: 23, 1> 23 23>3, 2, 2> 23 2 23>3 23>2, 1>2, 2.25 Evaluate each of the following: (a) (b) (c) (d) tan 180 2 cos 180 3 csc 270 sin 90 sin 0 3 cot 90 5 sec 180 4 cos 270 3 sin 4 cos 0 3 cos sin /2 4 cos /2 5 sin 3 /2 2 sin /2 sin 0 (b) 5, (c) 6, (d) 3
Ans. (a) 0, 2.26
State the quadrant in which each angle in radian measure terminates: (a) Ans. /4, (a) I, (b) 5 /6, (b) II, (c) 11 /3, (c) IV, (d) (d) III, 3 /4, (e) II, (e) 8 /3, (f) II, (f) 17 /6, (g) IV (g) 23 /6
State the point on the unit circle that corresponds to each real number. (a) 17 , Ans. (a) (b) (c) (d) (b) 13 /2, (c) 7 /2, (d) 28 (0, 1) (0, 1)
W(17 ) W( ) (cos , sin ) ( 1, 0) W( 13 /2) W( /2) (cos /2, sin /2) W(7 /2) W(3 /2) (cos 3 /2, sin 3 /2) W(28 ) W(0) (cos 0, sin 0) (1, 0)
Trigonometric Functions of an Acute Angle
3.1 Trigonometric Functions of an Acute Angle
In dealing with any right triangle, it will be convenient (see Fig. 3.1) to denote the vertices as A, B, and C with C the vertex of the right angle; to denote the angles of the triangles as A, B, and C, with C 90 ; and to denote the sides opposite the angles; as a, b, and c, respectively. With respect to angle A, a will be called the opposite side and b will be called the adjacent side; with respect to angle B, b will be called the opposite side and a the adjacent side. Side c will always be called the hypotenuse. If now the right triangle is placed in a coordinate system (Fig. 3.2) so that angle A is in standard position, the point B on the terminal side of angle A has coordinates (b, a), and the distance c 2a2 b2, then the trigonometric functions of angle A may be defined in terms of the sides of the right triangle, as follows:
Copyright © OnBarcode.com . All rights reserved.